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The formulation of the boundary conditions based on asymptotic approaches is discussed for the two-dimensional linear static 
theory of shells. The error of the traditional boundary conditions is estimated in the simplest cases. They are formulated for the 
first time for more complicated cases. A modified Saint-Venant principle, adapted for use in two-dimensional theories of shells 
and which eliminates their apparent contradiction, is formulated. Examples of the clamping of the edges, for which the Kelvin-Tait 
transformation lose their meaning are presented. © 1998 Elsevier Science Ltd. All rights reserved. 

1. FORMULATION OF THE PROBLEM 

We will assume that the three-dimensional elastic medium which forms the shell is referred to a 
triorthogonal system of coordinates (Ctl, cx2, ct3) in which the radius vector of points of the medium are 
specified by the equation 

P(al, or.2, a 3) = M(oq, Ct2) + ct3n 

where M(cq, ct2) defines the middle surface, n is the unit vector of the normal, and the faces are specified 
by the equalities ct3 = _h. It is assumed that the half-thickness of the shell h is small compared with 
the characteristic dimension of its middle surface R (for a shell it is convenient to take R to mean the 
characteristic radius of curvature, while for a plate it is any dimension of its middle plane). 

We will assume that the shell has a butt (a narrow boundary), which is not necessarily unique and, 
to fix our ideas, we will assume that it coincides with the coordinate surface al = 0. We will assume 
that in terms of the three-dimensional theory of elasticity, a boundary-value problem is formulated in 
which the following conditions must be satisfied: on the faces ct3 = _h are conditions which denote 
that there is no clamping and which specify external forces applied to these surfaces; on the butt cq = 
0 there are three conditions, which determine the form of the clamping (the existence of absence of 
other butts of the shell plays no part in the later discussion). 

We will further discuss mathematical methods of formulating the conditions which must be imposed 
on the line at  = 0 of the middle surface in the case considered when analysing the shell using the two- 
dimensional Kirchhoff-Love type theory. Here it is assumed that no (even obvious) physical con- 
siderations must be used. 

We will investigate once again a free and rigidly clamped end face from this point of view. Moreover, 
we will discuss more complex butt conditions, for which the problem of the two-dimensional analogue 
cannot be solved by elementary methods. 

We will use the concept of the separation of the stress-strain state of a thin shell into an internal 
stress-strain state and a boundary stress-strain state. In statics the latter means the stress-strain state 
and a boundary stress-strain state. In statics the latter means the stress-strain state localised in the 
region of the butt of the shell (or other stress concentrators) and which decays exponentially in a certain 
way with distance from the line oq = 0. The internal stress-strain state and the boundary stress-strain 
state of a thin shell differ radically from one another in their properties and will be considered separately 
here, as is done in the asymptotic theory of the integration of singularly degenerate differential equations. 

We will assume that for the internal stress-strain state of the shell, the notion of its variability with 
respect to the coordinate variables cq, cx2 has a fairly definite meaning (or, that this internal stress-strain 
state can conveniently be represented as the sum of terms possessing such a property). Hence, using 
the method of scale transformations of independent variables, we can put 

tPrikl. Mat. Mekh. Vol. 62, No. 4, pp. 664-677, 1998. 

617 



618 A.L. Gol'denveizer 

(11 = R2L-P~I, (12 = R~'-P~2, (13 = R~'-I~ (1.1) 

and we will assume that g is a large parameter, defined by the formula L l = R / h  (1 is an arbitrarily chosen 
number that is not too large), and that any differentiation with respect to the new independent variables 
~1, ~2, ~ does not change the asymptotic form of the required quantities. The nurnberp in (1.1) is defined 
by the relation p / l  = t, in which t is the variability index of the required internal stress-strain state (if 
the variability of the internal stress-strain state with respect to al  and a2 is different, t must be regarded 
as the so-called common, i.e. greatest, index). 

When determining the boundary stress-strain state we will assume that it is constructed in the region 
of the coordinate surface Gt 1 = 0 and must possess high variability, both with respect to the variable Gq 
(in order that attenuation should occur with distance from oq = 0), and with respect to the variable c~3 
(in order that the face conditions can be satisfied on closely situated surfaces ct 3 = _+h). Correspondingly, 
for the boundary stress-strain state, scale transformations of the independent variables must be carried 
out using the formulae 

(11 = Rg- tOI ,  (12 = R2L-P02, (13 = R~'-I~ (1.2) 

Here 0l, 02 possess the same properties as ~1, ~2 in (1.1), while ~ has the previous meaning. 

Remark .  We will postulate that the boundary stress-strain state has the same large (equal to unity) variability 
index with respect to cq and ct3. We will show below that, when satisfying the butt conditions, this is no way leads 
to incorrect boundary-value problems (other forms of (1.2) lead to some contradictions). 

It was shown in [1--4] that the internal and boundary iterative processes for integrating the differential 
equations of the three-dimensional theory of elasticity enable one to construct the internal stress--strain 
state and the boundary stress-strain state of a thin shell separately. In the initial approximation they 
simultaneously enable one to express the complete stress-strain state of the shell by the following formulae 

I -0  . ~,,t-l+2p-c+b_l \ , 
"Cii = (1 + 0[ 3 / Rj )G ii = ~ ('~ii "I- ~al~ -I, ii ) "1" ~ii 

"~ij ( l + ( 1 3 / R i ) o i j  ~,1(,~0 - l + 2 p - c + b l  " 
= = + ~ g  ~iJ)+'fiJ (1.3) 

= = ~ '  ( X i 3 + ~ ' [ 1 3  b i3 i3 ( i , j= l , 2 ;  i ; e j )  "~i3 ( l + ( 1 3  / R j ) o i 3  p 0 I +r2~-l+2p-c+b,c2 ) +  7 ¢ 

't33 = (1 + a.~ / R I)(1 + a 3 / R2)033 kc('l:3°3 + ~'I;/3 + ;2~,-1+2p-c+b'c23 _t_ 73a-21+2p-2c+b,r ~ _t. ~. .= T , ~  ,v , .331T ~,33 

v i = ~, t -v+b(v°  i + ~ k - t + 2 P - c o ~ ) + 6 i  (i = 1,2) (1.4) 

, I - . , h .  o +;X-I+co~)+ff3 I)3 = ~ [1/3 

(reran = ~,"+a E S , ,  ((1) + ~,V+~ ESm,  (~) ,  

~ , =  k ~ + a - t R V m ( ( 1 ) +  ~,v+~-tRVm(~), m , n  = 1,2,3) 

Here <3mn , v m (/7/, n = 1, 2, 3) mean the stresses and displacements of a three-dimensional elastic 
medium, while Xmn are the so-called asymmetrical stresses, the meaning of which follows from (1.3), 
and R~ are the principal radii of curvature of the middle surface. 

The asymptotic factors g t and ~,P in (1.3) and (1.4) have the same meaning as in (1.1) and (1.2). We 
will say more about ~c, gb below. The quantities denoted by x, t) (when this causes no confusion, here 
and below we will only write the root letters, i.e. we will drop all the superscripts and subscripts), are 
functions of the two variables ~1, ~2 or, which is the same thing, oq, (/,2. They define the stresses (x) and 
the displacements (t)) of the internal stress-strain state and are the required functions of the theory of 
thin shells. They are related to the required quantities of this theory by the formulae 

-~R ~R I - ~'21-2p+c-b 3 Gi xOii = Ti , "¢°ij = Sij ; "¢ ii - - 2 R--T 

"¢~2 -- ~21-2p+c-b 3 0 1 ,-l+2p-c., .b_2 ~ l -p  
- 2 - . -~n l2 ,  Xi3 +-~A, ' i3  = - 2"---~ "N` (1.5) 

0 _ _~-I+C-bw, v o = ~- t+p-bui  ' V 3 V ~ = -S~ , - t -P+c-b 'y  i 
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In these equations we have used the notation of monograph [4] for quantities on the right. These 
quantities satisfy all the equations of the general two-dimensional theory of shells derived there (this 
includes the adequacy of the single-term asymptotic form of the internal stress-strain state and of the 
Kirchhoff-Love theory). 

The following additional relations [4] (not stipulated in the classical theory of shells) also hold 

x°i3 + ~,-t+2p-c+/'x/23 = ~-P(x~ - x ~ ) / 2  (1.6) 

l L-P('c~-'~Z~)/2 (i=1,2), v~=-~,-t'v(TI+T2)/(2E) qii3 = 

In their derivation, described in [4], it is assumed that the conditions on the faces have the form 

a 3=+h:  xt3=X~3 (k=1,2,3) 

We have denoted by S and V in (1.3) and (1.4) the dimensionless stresses and displacements of the 
boundary stress-strain state (ES are dimensional asymmetrical stresses, hV are dimensional displace- 
ments, and the subscripts and superscripts are also omitted here and below). We have taken into account 
the fact that the boundary stress-strain state is separated into an antiplane stress-strain state, approxi- 
mately defined in the (01, ~) plane by the equations of the antiplane problem of the theory of elasticity, 
while the plane stress-strain state is defined in the same way by the equations of the plane problem. 
The quantities S and V are marked with the additional letters (or) and (13) respectively. This means 
[1, 4] that among S#(t~) and V~(tz) the following quantities are asymptotically principal quantities 

P = [Si2 (ft.), $23 (~),  V2 (~)]  (1.7) 

while among S0(13 ) and Vk(13) the following quantities are the principal quantities 

Q=[Sll(~), $22(~) , $33(~), SI3(~), Vi(~), V3(~) ] (1.8) 

This property of the boundary stress-strain state is taken into account in (1.3) and (1.4) by the 
asymptotic factors ~? ~v for the quantities S and V. When we are concerned with the quantities P we 
must put ~t = 0, v = -l  + p, and for the quantities Q we must assume ~t = -I + p, v = 0 [4]. 

The antiplane and plane problems when constructing the quantities S(a), V(tx) and S(13), 1/(13) must 
be solved taking into account the homogeneous face conditions, since the external forces applied to 
the surfaces ct3 = _+h have already been borne in mind in the internal iterative process. Hence, for the 
quantities S(ct), V(a) and S(13), 11(13) in (1.3) and (1.4) we have introduced the asymptotic factors ;~ 
~.P in which ix, 13 must be determined depending on the form of the butt conditions using the discussions 
described below. 

Formulae (1.3) and (1.4) define, in explicit form, the asymptotic form of a certain family of integrals 
of the differential equations of the three-dimensional theory of elasticity of a thin body with free faces. 
It follows from the results of the following sections of this paper that the corresponding stress-strain 
state may be approximately subject to not only the face conditions but also the butt conditions of the 
three-dimensional theory of elasticity (an iterative improvement of this result is also possible). Hence 
it follows that the powers ~ in (1.3) and (1.4) specify the asymptotic form of the complete stress--strain 
state of the shell. It depends on the parameters ri, t, c and b, the physical meaning of which is as follows: 
rl is the dimensionless half-thickness (the principal parameter of the shell asymptotic form), p/l = t is 
the variability index of the internal stress-strain state of the shell and c is the discriminant parameter; 
it is related to the parameters p and l by the following relations. 

For a shell which does not degenerate into a plate 

c- -0  for 0~<t~<~; c = 2 p - I  for t~>~ (1.9) 

for a plate 
c = 2p - l for any t (1.10) 

(the parameter c appears in (1.3) and (1.4) due to the fact that when the variability index t passes through 
the value 1/2, the internal stress-strain state undergoes a qualitative change), and b is the so-called 
pseudo-bending index [5]; it represents the asymptotic closeness of the deformation of the middle surface 
of the shell to infinitesimal bendings. 



620 A.L. Gordenveizer 

2. A SHELL WITH A F R E E  BUTT 

Suppose the shell has a free butt ~t 1 = 0 on which, by virtue of (1.3), the following approximate 
conditions of the three-dimensional theory of elasticity must be satisfied 

Xt(~oj + ~X-t+2p-c~l ~) + x-~+p+~Es~ i (~) + X~ES~ (I~) = 0 

~/( ' i702 + ~-1+ 2p-c'cII2 ) + ~,a ESi2 ( O0 + ~,-t+P+I~ ESI2 (~) = 0 (2.1) 

0 Ila-t+2p-c,,2 ~_r,l ~'~-l+2p-ctr2 ~),c23+~-l+aES13(oO+~-p+fJES13(~)=O "[13 + / ' . 3  ~'~' 1"13 T ~1'13 T ,~ ,  ~,'-~ 

In these equations the exponents ~t and v are chosen as described in Section 1, and to reduce the 
number of versions we have assumed (as everywhere henceforth) that b = 0. The superscripts p, I and 
c in (2.1) are assumed to be given, taking into account the proposed properties of the solution of the 
problem considered. 

The proposed approach to the formulation of the boundary conditions in the classical two-dimensional 
theory of shells consists of the fact that relations of the form (2.1) are treated as the butt conditions 
for the problem of constructing the boundary stress-strain state, i.e. the quantities S and V are assumed 
to be the required quantities, while the quantities x are regarded for the present as known, and we 
consider the problem of those conditions which x must obey on the line ¢tl = 0 in order that S and V 
should possess the property of Saint-Venant decay with respect to Gq. 

The boundary stress-strain state must be constructed in the half-strip {0 ~< al < ~; -h <~ o~ 3 ~< +h}, 
taking into account the homogeneous face conditions Sag = 0 (k = 1, 2, 3) on the line (x3 = _h and 
with the additional requirements on the decay of the three stresses Slk and three displacements Vk as 
cq --> oo. In addition, of course, we must satisfy the condition that the boundary stress-strain state must 
be bounded as ~. -~ o0. To satisfy these requirements in (2.1) we can arrange the values of the weighting 
exponents a and 13 and prescribe the form of the four conditions set out in the classical theory of shells 
on the line ft.1 = 0 for the values of x Hence, we must obtain that: 

(a) in relations (2.1), after dropping the common factors of the form ~:, it should be possible to take 
the limit as ~ -~ oo (i.e. there are no positive powers of ~.); 

(b) from the limiting butt relations (as L --> ~) one butt condition follows for the antiplane problem 
and two butt conditions for the plane problem; 

(c) the limiting butt conditions for both the antiplane problem and the plane problem separately do 
not admit of a trivial (zero) solution (otherwise this would indicate that there is an error in the choice 
of or, 13). 

These requirements will be satisfied if the following relations are satisfied 

oq=O: x°,=O, x°~=O, x',,=O (2.2) 

and if the following formulae are assumed for the weighting factors ~t, 13 

ot = 2p  - c ,  [3 = p ( 2 . 3 )  

Here the limit boundary relations (2.1) take the form 

X-J+2p-~ES~(~) + ES, ~ (f~) = O, ~'~2 + ES~2(a) = 0 
(2.4) 

+ X-t+ z~-~ ES,3 (a) + ES~3([~) = 0 

In (2.4) we have retained terms with the factor ~fl+zp-c, although we have assumed that the limit was 
taken as ~ ---> ~. The point is that this factor, according to (1.9) and (1.10), is either negative (when 
p <//2), or is equal to zero (when p >I l/2). It must be interpreted in the appropriate way depending 
on the values of the parameters p and l. 

It can be assumed that the inhomogenei~ requirements are also satisfied in (2.4). This, generally 
2 1 speaking, is ensured by the terms with x~2, x°3, x13, x13 in (2.4). According to (1.5) and (1.6) they do not 

belong to quantities which, in the two-dimensional theory of shells, are subject to any boundary 
requirements. Hence, the free terms in (2.4) can only vanish "accidentally", i.e. only in specific problems 
for specific value of the input data. 

The problem remains of ensuring the Saint-Venant decay of the boundary stress-strain state. We will 
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examine this problem after considering some general properties of the approximate theory of the 
boundary stress-strain state in the following section. 

3. A MODIFIED SAINT-VENANT PRINCIPLE IN THE THEORY OF SHELLS 

We will consider the boundary stress-strain state of a shell in the vicinity of the butt al = 0 and we will 
write the equilibrium equations of the three-dimensional theory of elasticity for it in the following form 

X.=?%+?%+ao, =O (i-1 2 3) 
’ ila, aa, aa, 

- I * (3.1) 

(for simplicity we have used Cartesian coordinates, but the final conclusions remain true for any 
coordinate system). 

We replace the required quantities in (3.1) using the formulae 

a,, = ES,, (s. t = 1,2,3) (3.2) 

and for the independent variables we make the replacement (1.2) and take into account the fact that 
the asymptotic form of the boundary stress-strain state can be expressed by the relations [4] 

~(o,,.~**,a,,.a,,)=3[S,,(~).s~*(~),s~~(~),s,~(~)l+ 

+ha-‘+p[S, ,(cG, S22(a)rS33(a)r S&)1 
(3.3) 

+(a,29023) = ~aO[Slz(~).S23(~)l+~~.B-r+P~S,2(BXS23(8)1 (3.4) 

In these equations S(a), S(p) are quantities of the form O(h”) for the same x for all S, and a, j3 are 
weighting factors, introduced in Section 1. The latter characterize the relative asymptotic intensity of 
the antiplane (a) and plane (p) stresses in the boundary stress-strain state. 

Relations (3.3) and (3.4) were derived neglecting quantities of the form 

& = o(h”+p) (35) 

In the discussions relating to the formulation of the boundary conditions, we assumed that the neglect 
of other quantities of the same order was acceptable. 

We will agree to consider the following three cases separately 

O<a-pcl-p (3.6) 

O<fi-a<f-p (3.7) 

a-p=0 (3.8) 

(the quantities a, l3, which do not fit into these frameworks, will not be necessary below). 
Boundary stress-strain states with different asymptotic properties are characterized by relations 

(3.6)-(3.8). We will assume that the following are possible: an almost antiplane boundary stress-strain 
state, in which inequalities (3.6) are satisfied and 012 and 023 are asymptotically continuous, an almost 
plane boundary stress-strain state, in which inequalities (3.7) are satisfied and oll, oz2, 033, cl3 are 
continuous, and a mixed boundary stress-strain state, in which equality (3.8) holds and all these stresses 
are asymptotically equivalent. 

It can be verified that when any of relations (3.6)-(3.8) are satisfied, it is sufficient to retain only the 
first terms on the right-hand sides of (3.3) and (3.4) to within the accuracies specified by (3.5). Moreover, 
scale transformations (1.2) hold for the boundary stress-strain state. This enables us to conclude that, 
with the accuracy of (3.9, the equilibrium equations (3.1) can be replaced by approximate equalities, 
which have the form 
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] 

+I a'32 / -o 
" k a2 )o.6  aa3 

(3.9) 

We have assumed here that the terms in brackets need to be retained only when the relation, the 
number of which is indicated outside the brackets, is satisfied. (Thus, when (3.8) is satisfied all the terms 
in the brackets drop out.) 

We will introduce into consideration the following four obvious equations 

lI x las  = o, IJ x2as = o, Ilx, ag=0 

~J (Xt0t 3 - X3a t )dg= 0 
(3.10) 

in which the integration is extended over the region g = {0 ~< ota ~< oo; -h ~< ot 3 ~ +h} and will expand 
their left-hand sides by traditional methods of the theory of elasticity, taking into account the fact that 
the stresses ~st must be subject to the homogeneous face conditions 

~3 = +h: (Y3k = 0 (k  ~- 1, 2, 3) 

and the butt conditions 

s t = 0 :  ~l=kts11,  al2=~,tsl2, 013=~Vsl3 (3.11) 

(S11, S12 and s13 are specified functions of the variables ot 2 and ct3, commensurable with k0) and the 
conditions for sufficiently rapid decay of the stresses o as oq ~ oo. 

The corresponding actions were described in detail in [6] for the case when the approximate equili- 
brium equations correspond to conditions (3.6). Here Eqs (3.9), taking (3.11) into account, can be 
reduced to four equations (integration over or3 here and later is carried out from -h to h) 

Jsj~da 3 =0, Js~2dct 3 =0 

i O Z,t'l s,3ao~ 3 + k ~-~2 I s,2o~3alx3 =o  (3.12) 

In the last of these, the term in the braces is negligibly small, to within the accuracy described by 
(3.5). This follows from (3.11) and from the fact that the additional integration over oq of the 
exponentially decaying function o12 is provided for in it. 

After dropping the small term, (3.12) will contain only values of the stresses specified on the line 
a~ = 0, and, consequently, conditions (3.12) can be formulated without solving the corresponding 
boundary-value problem. These conditions are obviously necessary for a decaying solution of the 
boundary-value problem in question to exist. Here we will mean by the modified Saint-Venant principle, 
as previously [6], the assertion that conditions of this kind are also sufficient. 

After obvious reduction using (1.5), Eqs (3.12), taken without the term in the braces, have the form 

Tt = $21 = Nt + oH21 = Gi = 0 when a I = 0 
aa2 

(3.13) 

They confirm the boundary conditions in the classical two-dimensional theory of shells for a free 
boundary, generally accepted at the present time. The error in these conditions is governed by estimate 
(3.5) used in this section. Below we will show that this is characteristic, generally speaking, for traditional 
boundary conditions of the two-dimensional theory of shells. Nevertheless, it has been shown [4] that, 
when deriving the two-dimensional differential equations of the theory of shells, a higher accuracy of 
the order of L -zt+~' is easily achieved. The question naturally arises of refining the formulation and 
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boundary conditions to quantities of the same order (these conditions have been called reduced 
conditions). However, the above discussion shows that for the boundary conditions the question of 
refinement is more complex than for differential equations, and the construction of more accurate terms 
involves the need to solve some additional boundary-value problems of the plane theory of elasticity. 

Remark. It can be shown that the accuracy (3.5) achieved here is sufficient to justify the use of relations (2.2) in 
deriving limit inequality (2.4). 

We will now assume that, instead of (3.6), inequalities (3.7) are satisfied. Using the approximate 
equilibrium equations (3.9), we obtain from the first, third and fourth relations of (3.10) 

J  da3 = J s 3da3 = J s  a3da  = 0 

To convert the second equation of (3.10) we will take into account the fact that in the case considered 
the plane boundary layer is the main one for which the following approximate equation holds [4] 

(322 + V(Oll + 13133) = 0 

and the expression for X2 in (3.9) reduces to the form 

~ 2 ,  _ v ( 3 " , ,  + ~ 3 3 ) +  3ff23 (3.14) 

When interpreting the second equation of (3.10) the only difficulties that arise are those related to the second 
term in (3.14). We will carry out appropriate calculations (integration with respect to Ctl is carried out from zero 
to infinity) 

IIa,tae=Iaa3Iaj aa  =I [alal l.,_-0-Ia  ,/al acc.  

The first term in the braces vanishes due to the assumption of the exponential decay of the stress chl. The second 
term can be converted using the first equation of (3.9). We obtain 

IIOI idg = _iilxi ~11 ag = IaldO[l I ~-~alx3 0 
~cq o~x~ 

Further we have 

(3~ Ot3=+h ~--~da3 ldl3tl ~.-Ilo~3 ~ 3  dg..~. II 33rig=I{ [ 3G331113=-h-la3 ~ t  3 j 

= ~ja 3 ~a311dg = -kt'Is31a3dlz 3 

Finally the conditions for the modified Saint-Venant principle to be satisfied in the case of (3.7), i.e. 
for a fairly rigidly clamped butt [7], take the form 

SSl ido{3 = S Sl3dOt 3 = SSllOt3do{3 = 0 

. p a 
~.llSl2dCx 3 +JV~¢ ~-'~2 I$13(x3dcx3 = 0 

(j is a conditional factor which up till now has been assumed to be equal to unity). 

(3.15) 

Remarks 1. There is an obvious analogy between the last equation of (3.15) and the third equation of (3.12). 
The latter, in the classical theory of shells, arises due to the use of the reduced shearing force. However, it does 
not follow from the last equation of (3.15) that for sufficiently rigid clamping of the butt similar corrections must 
be introduced for the shearing force. When using (1.2) it can be shown that the term discussed in (3.15) can be 
dropped with an error of the order of ~-2~+2r. This means that we can putj --- 0 in (3.15), i.e. we can assume that 
for sufficiently rigid clamping of the butt, to obtain the modified conditions for Saint-Venant decay we only need 
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to drop the requirement that the boundary twisting moment should vanish in the canonical conditions without 
changing the meaning of the shearing force. 

2. It follows from the above, in particular, that the well known purely static discussions of Kelvin-Tait are not 
a comprehensive justification for using the reduced shearing force. One needs to take into account not only the 
statics but also the nature of the clamping of the butt. 

It can be verified that the decay conditions (3.15) when j  = 0 also hold when ot = 13. 
Note that the proposed approach to formulating the boundary conditions enables one to obtain, in 

passing, relations of the form (2.3) for the weighting exponents ¢t, 13, i.e. to determine the qualitative 
pattern of boundary elastic phenomena in almost two-dimensional bodies. 

Formulae (1.3) show that when ¢t = 13 = l, the antiplane boundary layer, the plane boundary layer 
and the internal stress-strain state of the shell are asymptotically equivalent to one another as regards 
the intensity of the stresses. In view of this, taking (2.3), (1.9) and (1.10) into account, we conclude 
that, in the region of the free butt 

(a) in a shell (which does not degenerate into a plate) when t < 1/2, the boundary stress-strain state 
as a whole is asymptotically secondary, and when t >I 1/2 it is commensurable with the internal 
stress-strain state; 

(b) in a plate the internal stress-strain state and the boundary stress-strain state are of the same order 
for any t; 

(c) in the separately taken boundary stress-strain state, generally speaking, the antiplane boundary 
layer predominates, and the only exception is the case when the shell does not degenerate into a plane 
and t = 0, i.e. when the boundary stress-strain state is secondary as a whole. 

4. C L A M P E D  B U T T S  

We will now consider the case when the butt ctl = 0 is clamped and the conditions of the three- 
dimensional theory of elasticity 

oq =0:  vl =0,  u 2 =0,  u3 = 0  (4.1) 

are imposed on it. 
We will use relations (1.4), putting b = 0 in them, we choose ~t, v, as was done in Section 1, and we 

specify the weighting factors by the formulae 

We obtain the butt conditions 

c t=p ,  13 = 1 (4.2) 

Rv~ CI~) + RZ.-2t+=P V~ Cot) = -Z, t-p Cv~ ° + Z.-t+2P-~;vl) 

RV2 {a) + RV2 ~1~) = -Z?t-2P {v ° + Z'-t+2P-¢;v[) 

R%(I~) + R~,-2t+2P v3 (a)  = _~ -c  (vO +~:-t+c ~v3) 

(4.3) 

which will once again be regarded as the boundary conditions for the boundary stress-strain state. 

Remark. Equations (4.3) were derived previously in [7, 8] without describing the corresponding calculations and 
contain an error, albeit unimportant for the final results: on the left-hand sides of the first and last equations (4.3), 
instead of the factors X -n+2p the factors X 4+~'-< are erroneously written. Moreover, the expression in brackets on 
the right-hand side of the last equation (4.3) was supplemented with the term X-2t+~2v2, which was necessary for 
a correct calculation of the boundary stress-strain state. In the present paper, where we are only concerned with 
the problem of the boundary conditions in the two-dimensional theory of shells, this refinement is unimportant. 

On the left-hand sides of (4.3) all the powers of ~. are non-positive. On the right-hand sides X are 
positive for the five quantities v °, v~, v °, v2 °, v~. The first four of these, according to (1.5), are proportional 
to the displacements ul, u2 and w of the middle surface and the elastic rotation angle ,/. Hence, it is 
natural to assume that when al  = 0 they vanish with asymptotic accuracy, sufficient to neutralize the 
positive Rowers of ~.. This is confirmed by the results obtained below. A unique positive power of ~., in 
front of v~, remains, i.e. with a value proportional, by (1.5), to the rotation angle ~'2. The following formula 
holds for the latter [4] 
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1 aw v 2 
Y2 = A;~ d~ 2 R 2 (4.4) 

It follows from this that along the line or1 = 0 the quantity v~ vanishes together with v °, v~, v °, v2 °. 
Hence, there is no contradiction in the values of (4.2) for ct, 13 as regards the fact that there are no 

positive powers of k in the butt conditions (4.3). 
Relations (4.2), generally speaking, also do not contradict the requirement of inhomogeneity, since 

the third of equations (4.3) contains the terms v~, which, by (1.6), can vanish only "accidentally" when 
or1 = 0. In this situation (4.2) is subject to review, on which we will not dwell here. 

Remark. For a clamped butt essentially the same discrepancy occurs as for a free end; we would expect five rather 
than four boundary conditions to be imposed on o. However, in this case, the boundary equation v~ = 0, follows 
from the assumed vanishing of the boundary values of the quantities v °, v °. 

Formulae (4.2) show that, in the vicinity of a clamped end the boundary stress-strain state of a shell 
is always determined mainly by the solution of the plane problem and is of the same order as the internal 
stress-strain state. Correspondingly, requirements (3.15) with j = 0 become the conditions for the 
applicability of the modified Saint-Venant principle in this case. They must relate to the reaction forces 
which arise on the butt ctl = 0, i.e. to quantities which are unknown at the stage when the shell boundary 
conditions are formulated. To overcome this obstacle we introduce into consideration typical problems 
of the theory of the boundary stress-strain state. We will assume in these that the approximate equations 
of the anti-plane and plane boundary layers are solved in a rectangle 

10 <~ 02 ~< 01 ° , -1  ~ ~ ~< +1} (4.5) 

(0 ° is a fairly large number) and we take into account the face conditions 

{=+1: S.~j=O (j---1,2,3) 

the clamping conditions on a sufficiently distant butt 

01=O°: Vi=O (i=1,2,3) 

and the conditions on the butt considered 

0 l = 0 :  V n = 5 . ~ k  (k=O,l;m,n=l,2,3) 

(8,nn is the Kronecker delta). 
Hence, problems of the approximate theory of the boundary stress-strain state, solved in a rectangle 

(4.5) taking the three static or kinematic conditions on each of the rectilinear parts of the boundary 
into account, are typical. Here, in any specific typical problem, only one condition, defining, when 
01 ~ 0, some of the dimensionless displacements as a quantity which varies over the thickness as t ° 
or ~,  is homogeneous. 

It is assumed that typical problems can be solved approximately using the procedure described below. 
If a unique inhomogeneous condition of a typical problem specified the end displacement V1 or V3, the 
quantities Q, defined by relations of the form (3.3) are constructed as a solution of the plane problem 
of the theory of elasticity (taking into account the related boundary conditions, including also the unique 
inhomogeneous condition). The corresponding quantities P in this typical problem will be asymptotically 
secondary (containing, by (3.4), the additional factor UI+P). The equations of the inhomogeneous 
antiplane problem, in which the right-hand sides contain the proportionality factor U I÷p, serve to 
construct them. These equations must be solved taking into account the remaining unused 
homogeneous boundary conditions. Hence, in this case, we can put P = ~-t÷p p .  and assume that, in 
formulating the boundary-value problems defining P* and Q, the large parameter ~. does not occur in 
it, i.e. P* and Q are commensurable with ~0. 

Equally, for the case when the end displacement 1/2 is specified by a unique inhomogeneous boundary 
condition in a typical problem, we can assume that its solution is determined by the quantities P and 
Q = L -t+p Q*, in which P and Q* are of the same order as ~0. 

We will introduced the notation sij(Vr = ~k) and we will assume that sij[ • ] is the butt value of the 
dimensional stresses o g (when 01 = 0), defined by the solution of the typical problem in which the unique 
inhomogeneous condztion is expressed by the equation written in square brackets. For example, the 
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symbol sn[V1 = ~1] denotes the stress Oll on the butt 01 = 0, which arises in the elastic rectangle (4.5) 
as a result of the application of a displacement 111 equal to ~' to its butt. 

The boundary stress-strain state corresponding to condition (4.3) can be constructed as follows: On 
the right-hand sides of (4.3) we only retain one term, (for example, -Xt-cy~ on the right-hand side of 
the second butt condition) and noting that in this term the quantity X'-Cv~l~ = 0 can depend only on 
the variable ~2, we replace this factor by unity. We obtain one of the typical problems, the solution of  
which is denoted by the notation [1,'1 = ~]. It occurs in the final expression for the required reactive 
force with the factor - Lt-Cv]. Using the same method we also take into account all the remaining terms 
on the right-hand sides of the end equations (4.3). Here, of course, we must bear in mind that if the 
inhomogeneity only occurs, for example, in the antiplane problem, all the solutions of the plane problem 
must be multiplied by the small quantity ~-/+P. 

Hence, the reactive forces sv[. ] (r = 1, 2, 3) on the butt ¢q = 0 are expressed by the formulae 

= -z -ps, j[v  = 1 I v  ° - j [ v ,  = ; I v ' ,  - x. t -cs i j[v3 = l ]v  ° - 

-~.°stj[V~ = ;]v~ - kt-t's~j[V2 = 1]v ° - ~,t'-Cs~j[V2 = ; ]v  I ( j  = 1, 3) (4.6) 

R$12 = - ~ , ° $ ; 2 [ V  I ~- I]Vl 0 - ~-'+2P-Cs~2[Vi = ; Iv  I - ~fl-Cs~2[V 3 = 1]v30 - 

(4.7) 

Here  the asterisks recall that the factor ~-l+p, about which we have spoken above, has been taken 
into account in the corresponding term. Consequently, we can assume that all the quantities s[. ] with 
an asterisk or without it are commensurable with ~0. 

5. T H E  B O U N D A R Y  C O N D I T I O N S  ON A C L A M P E D  B U T T  

To formulate the boundary conditions of the two-dimensional theory of shells on a clamped butt we 
must substitute the reactive boundary stresses, calculated from (4.6) and (4.7), into the four conditions 
for satisfying the modified Saint-Venant principle (3.15) withj  = 0. The latter contain integrals which 
must be evaluated in the interval (-h, +h) symmetrical about tt3. Hence, some of these vanish in view 
of the evenness or oddness of the functions s[. ] with respect to a3. It can be shown that these properties 
can be expressed as follows: s11, s12, s13 are even when, in the corresponding typical problem, the 
inhomogeneous butt conditions are specified by one of the three equations II1 = 1, V2 = 1,113 = ~, and 
odd if the last equations have the form V1 = ~, V2 = ~, V3 = 1. 

Taking this into account we obtain, from the first and fourth decay conditions (3.15), after making 
the replacement a 3 = h~ (the integration with respect to ~ is from -1 to 1) 

2Lt- t'v° I st, [ V I = l id ;  + 2L°v~ I s,, [ V 3 = ; ] d ;  + 2L'- Pv ° I s~, [ V 2 = l id ;  -- 0 (5.1) 

~LOv101 $/2[VI --" l i d ;  + ~,'+Pv~ ~ $;2[V3 -- ; ] d ;  + ~,2/-2pv° I $12[V2 = l i d ;  m 0 

while the third and second conditions of (3.15) give 

  -CvlIs,,tv, =- ;]r,d; + = ;]r ,d;  = 0 (5.2) 

 '-Cvl I $,3[v, = ; ] d ;  + 01 = + = ; ] d ;  = 0 

0 0 Equations (5.1) and (5.2) form two independent systems of linear algebraic equations in (v 1, v2) and 
(v °, v~), respectively, which, according to (1.5), are proportional to the displacements Ul, u2 and w and 
the elastic angle of rotation Y1 in the two-dimensional theory of shells. Since (5.1) and (5.2) must be 
satisfied on the edge al = 0 the required boundary conditions corresponding to the clamped butt are 
determined by these equations. 

In systems (5.1) and (5.2) all the definite integrals can be regarded as known quantities. To determine 
them one needs to solve typical problems, in the formulation of which small parameters do not occur. 
Hence, we can assume that they are all commensurable with L ° and the asymptotic form of the coef- 
ficients of the systems discussed are explicitly expressed by the powers of ~. occurring in them. Hence, 
one can also easily obtain the asymptotic form of the unknowns in (5.1) and (5.2). It has the form 
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v o = of~.-l+pv[), v o ___ of~.-"t+'pv'.,, , /  v',=O(Z,Ov~), v°=O(~,-t+Pv[) <for c t ,=0)  (5.3) 

Hence, taking (1.5) and (4.4) into account, it follows that the mathematical approach used confirms 
the conditions set in the two-dimensional theory from physical considerations 

il i = u 2 = W = T I = 0  

and establishes that their error has the form OQ:4÷P). 

Remark. The third of estimates (5.3) does not denote "complete inaccuracy" of the boundary condition for '/1. 
It must be taken into account that, by virtue of (4.4), v[ vanishes when cq = 0 together with the quantities v °, v °. 

6. COMPLEXLY CLAMPED BUTTS OF THE SHELL 

1.A shell with apartialty clamped butt. Consider the butt ix1 = 0, clamped at one part of its thickness 
and free along the remaining part. We will assume that the inequalities 1 t> ~ I> 1 - Z and the butt 
conditions, which follow from (1.4), correspond to the clamping, while the inequalities 1 - Z I> ~/> -1 
and the butt conditions that follow from (1.3) correspond to the free part, where × is a fixed proper 
fraction. 

In this case we must put 

or=l, 13=1 (6.1) 

Hence, we obtain the limit butt conditions on the fixed part of the end 

~ - , < v  ° + ~-'+2~-~;v]) + Rv~<13) = o, x'-p<v ° + ~ - " ~ p - ~ ; v ; ) +  Rv2<a) = o 

~.'-C(v°3+ ~.-'+C~v~) + Rv3(ll) = o 

and on the free part of the butt 

,r o, + z-"~'"-':~,~], + es. (I~) = o. ~o + z-,+2p-c~12 + Es, 2 (a) = o 

(6.2) 

(6.3) 

~-t÷~ <~jo 3 + ;~]3 + ~-'÷2P-~2~23) + Es~3 <13) --- 0 

(We have taken into account the fact that, by virtue of (1.9) and (1.10), the inequality - 2 / +  3p - c < 0 
holds.) 

The necessary requirements, which ensure the satisfaction of the limit butt conditions, formulated 
in Section 2, are satisfied, if relations of the form (5.3), obtained for butt clamped over the whole 
thickness, are realizable with sufficient asymptotic accuracy. Hence, also, from considerations presented 
below, it follows that in the classical two-dimensional theory of shells the same boundary conditions 
are established on a partially clamped butt as on butt which is clamped as a whole. On the free part of 
the butt discrepancies arise which can obviously be removed when solving the problem of the boundary 
stress-strain state for the half-strip shown in Fig. 1. 

The solution of this problem (without having to satisfy any additional conditions) will always have a 
decaying form, which arise from the following physical considerations. 

In the clamped part of the butt of the half-strip reactions can, in principle, occur, which balance any 
forces applied to its free part. Hence, the assumption that the solution decays in this case is not in clear 

t~¢1-- # 

Fig. 1. 

/ 
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21 
21 
21 

~1-- 0 

Fig. 2. 

contradiction with the requirements of global balancing of the strip. At the same time the Saint-Venant 
principle (including the modified principle) can be treated as an assertion that the stress-strain state 
will always decay whenever this does not give rise to global unbalancing. 

The unconditional decay of the boundary stress-strain state in this case can also be revealed by the 
formal discussions used in Section 5 for a completely clamped butt. To do this we must introduce the 
idea of typical problems, which enable the reactive forces which arise from the butt conditions (6.2) to 
be expressed in terms of their solutions, and to relate to these actions forces which directly arise from 
conditions (6.3). Then, the four requirements of the applicability of the modified Saint-Venant principle 
lead, as in Section 5, to four linear algebraic equations, defining the boundary values of u and x. Powers 
of ~., contained in (6.2) and (6.3), occur in these relations, and an asymptotic analysis of this system 
becomes possible. It shows that the x-terms are asymptotically negligible compared with the u-terms, 
and this is equivalent to the conclusion drawn above (it is also indirectly confirmed by the asymptotic 
structure of the butt relations mentioned). 

We will not dwell on the details of this kind of discussion here or below. We will merely note two 
facts: (1) in the classical theory they in no way lead to a disparity between the number of boundary 
conditions and the possibility of satisfying them; (2) it is always implicitly assumed in them that the 
number ×, which specifies the relative thickness of the clamped part, does not approach asymptotically 
either to zero or to unity (otherwise, to formulate the boundary conditions, a preliminary solution of 
typical problems of the theory of the boundary stress-strain state would be required). 

2. The junction between two shells of different thickness. In this case, for ~q = 0 and any ~ we must 
satisfy all six equations, which follow from (1.3) and (1.4), but we must replace the quantities x, ~, S 
and 1/in them by the jumps which they undergo on passing through ix1 -- 0. 

In these problems formulae (6.1) for or, 13 remain true. Taking this into account, and setting up the 
six limit conditions at the junction, it can be shown that in the corresponding kinematic relations, i.e. 
in the analogue of (6.2), we must put 

o =s o =sv', =o (6.4) 

in order that all the positive powers of ~. in them disappear and the term 7~°~8v~, which ensures 
inhomogeneity of the problem of determining the boundary stress-strain state, remains. 

This problem must be solved in the strip shown in Fig. 2. The external forces, applied to the joint al 
= 0 of the strip, are determined by terms with the quantities 8x in analogues of Eqs (6.3). These forces 
must be subject to the conditions of Saint-Venant decay. In this case (when a = 13) they have the following 
form in the notation of formulae (1.5) 

8Ti = ~21 = 8NI = 8G1 = 0 (when oq = 0) (6.5) 

It follows from (6.4) and (6.5) that the treatment of the conditions at the junction of two shells that 
is traditional in the two-dimensional classical theory, is largely confirmed. Moreover, conditions (6.5) 
show that the Kelvin-Tait transformation in this case leads to an error: at the junction it is the jump in 
the "real" rather than the "reduced" shearing force that should vanish. 
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